Aircraft Design Optimization with Uncertainties

Maxim Tyan

Associate Professor, Dept. of Mechanical Engineering

Nov 25, 2025

Let's Design a Plastic Chair

- Problem statement:
 - Design a chair that can hold a 100 kg load

- Choose a material
 - Polypropelene
 - Elastic modulus = 1.5 GPa
 - Yield strength 35 MPa
- Design the structure
 - Legs, ribs, seat, back
 - Material thickness, dimensions
 - Cross sections
- Run numerical simulations
- On the paper the chair can hold the load
- Manufacture it

Now Let's Test It

Load the chair with a 100 kg mass

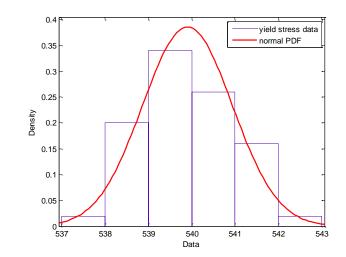
but why?

- Our world is not deterministic!
- Material is not perfect
 - Yield stress 34.684 ± 0.1234 MPa
- Manufacturing has tolerances ±2%
- Test load can be 99.5 100.5 kg

How can we design a chair that will not break?

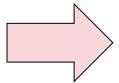
Engineers know the easy solution

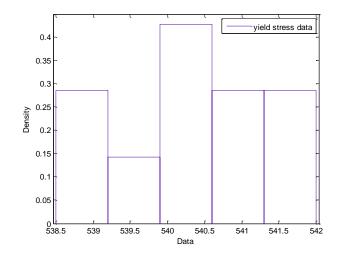
- Apply Safety factors
 - Design for 150 kg load, instead of 100
 - And/or Assume the $\sigma_{yield}=30$ MPa, instead of 35
 - And/or Round off the wall thickness to a higher value. 3.28 mm -> 3.5
- This approach is simple, but inefficient and not precise
 - The safety factor lumps up all the uncertainties
 - It provides no insights which uncertainty matters the most


Two Types of Uncertainties

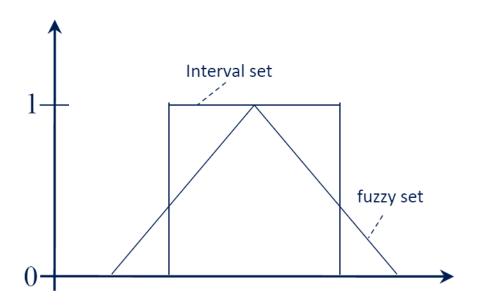
- Epistemic: due to lack of knowledge
 - Incomplete information or lack of understanding
 - Can be reduced with better models, accurate measurement, or data
- Aleatory: inherent variability
 - Comes from natural randomness in the system or environment
 - Cannot be reduced, only managed
 - Material properties due to inaccurate measurement
 - FEM/CFD errors due to mesh resolution
 - Uncalibrated sensors
 - Low-fidelity analysis models
 - Variability in raw material properties
 - Environmental conditions (turbulence, weather)
 - Load variations (traffic on bridges, vehicle payload)
 - Random electrical noise
 - Human/operator related variability

Probabilistic Approach to Uncertainty Modeling


Yield Stress Data (MPa, 50 samples)									
540.89	539.90	539.14	538.91	539.38					
538.85	539.76	540.08	540.03	540.75					
538.93	540.32	538.79	540.55	539.81					
539.19	540.31	538.89	541.10	540.89					
537.06	539.14	539.99	541.54	539.24					
541.44	539.97	541.53	540.09	538.60					
540.33	539.84	539.23	538.51	538.58					
539.25	540.63	540.37	539.26	540.49					
541.37	541.09	539.77	538.94	539.82					
538.29	541.11	541.12	542.35	539.80					

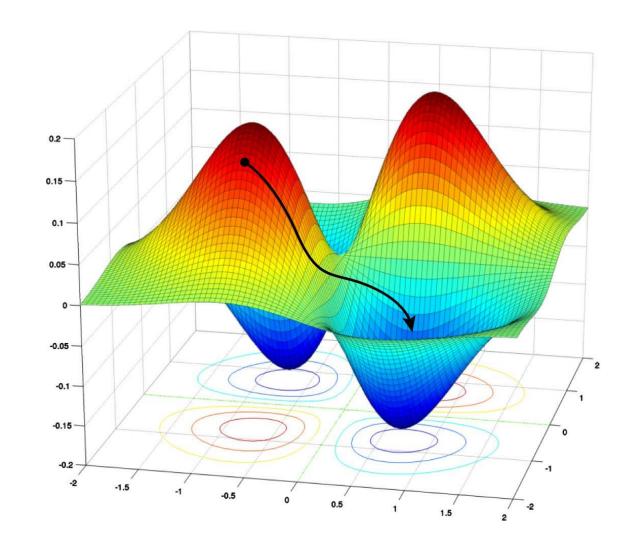


Good PDF estimate not possible with only 10 samples


Yield Stress Data (MPa, 10 samples)								
541.42	540.29	540.20	541.59	539.20				
540.70	540.84	539.76	540.22	538.83				

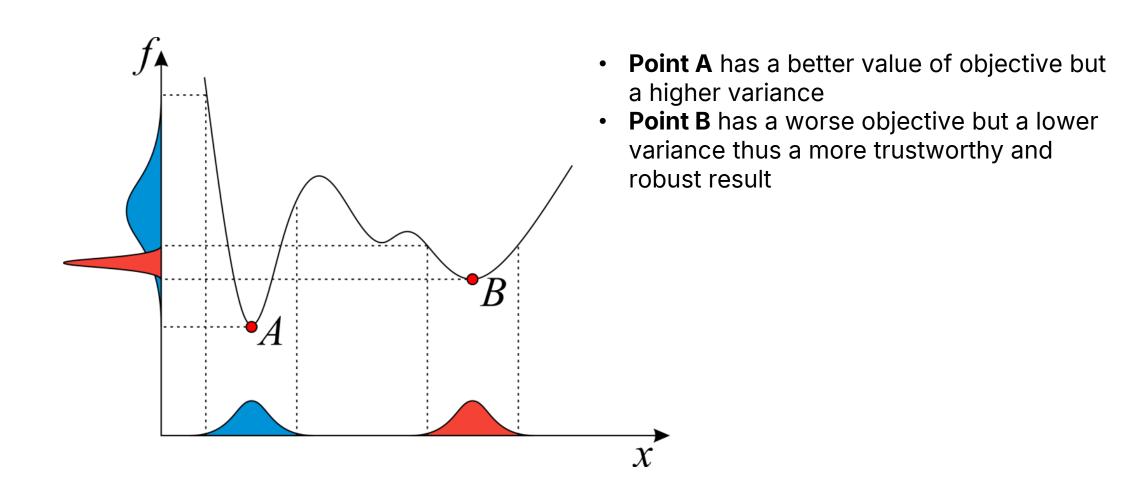
Non-Probabilistic Approach

- Intervals
 - Considers the interval between the highest and lowest observation
 - Degree of Membership is either 0 or 1
- Fuzzy Numbers
 - Considers other degrees of membership according to a membership function



Deterministic Optimization Formulation

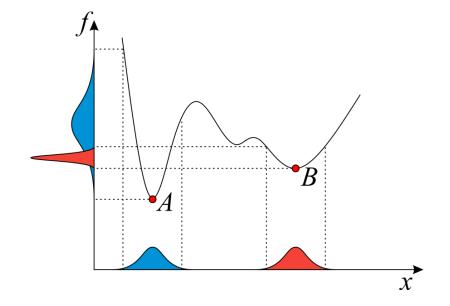
$$f(x) \ ext{subject to} \qquad f(x) \ ext{subject to} \qquad h_i(x) = 0, \quad i = 1, \dots, m_1 \ g_j(x) \leq 0, \quad j = 1, \dots, m_2 \ ext{and} \qquad x \in X \subseteq R^n$$


where

- ullet x is a vector of n real-valued design variables x_1, x_2, \ldots, x_n
- f(x) is the objective function
- $h_i(x)$ are m_1 equality constraints
- $g_j(x)$ are m_2 inequality constraints

Robust Design Optimization (RDO)

 Used to reduce the variability of objective function by minimizing the effects of uncertainty then removing the source of noise or uncertainty parameter effects


Optimization Formulation for RDO

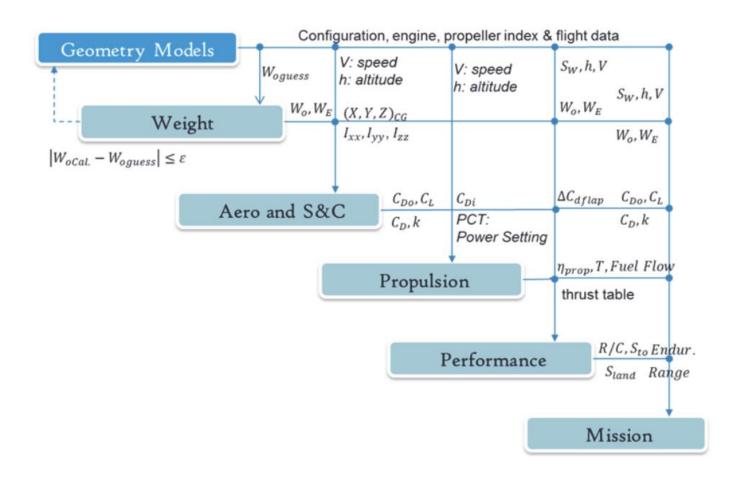
Minimize

$$z(d, x, p) = \mu_{\hat{f}} + \sigma_{\hat{f}}^2$$

Subject to

$$g_i(d, \mu_x, \mu_p) \leq 0, i = 1, \dots, n_c$$

- Mean and the variance are usually normalized
- Variance of f(x) is approximated using the first derivative


$$\mu_{\hat{f}} = f(d, \mu_x, \mu_p) \cdot \frac{1}{T_{\mu_f}} \qquad \sigma_f^2 \cong \sum_{i=1}^{nv} \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_{x_i}^2 + \sum_{i=1}^{np} \left(\frac{\partial f}{\partial p_i}\right)^2 \sigma_{p_i}^2$$

$$\sigma_f^2 = \sigma_f^2 \cdot \frac{1}{T_{\sigma_f}^2}$$

RDO for MALE UAV Design

Predator A Medium Altitude Long Endurance UAV

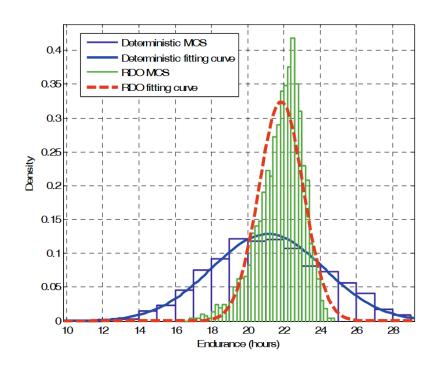
[1] N. V. Nguyen, J.-W. Lee, Y.-D. Lee, and H.-U. Park, "A multidisciplinary robust optimisation framework for UAV conceptual design," *The Aeronautical Journal*, vol. 118, no. 1200, pp. 123–142, Feb. 2014

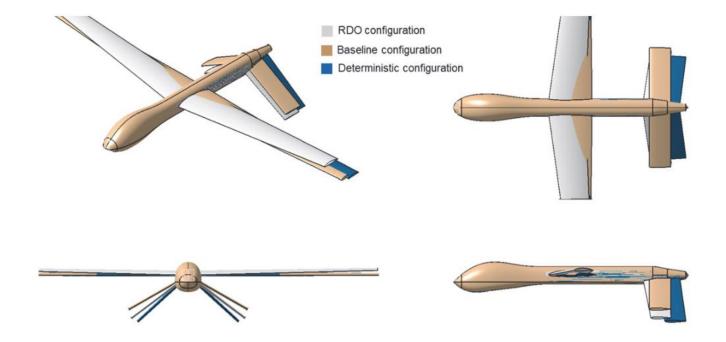
Formulation

Objective

- Maximize flight endurance
- Minimize variance of the endurance

	Baseline	Lower Bounds	Upper Bounds	Unit
Wing span	14.8	10	20	m
Wing root chord	1.24	1.0	1.4	m
Wing tip chord	0.5	0.3	0.7	m
Wing sweep	5	0	10	deg
Wing dihedral	0	0	5	deg
Wing X location	3.59	3	4	m
HT span	4	3.5	4.5	m
HT root chord	0.742	0.4	1	m
HT tip chord	0.742	0.4	1	m
HT sweep	0	0	10	deg
HT X location	6.82	5.8	7.8	m
VT span	1.14	0.7	1.5	m
VT tip chord	0.742	0.4	1	m
VT root chord	0.742	0.4	1	m
VT LE sweep	0	0	60	deg
VT X location	6.82	5.8	7.8	m
V_{design}	42	$27.78~(V_{stall})$	64	ms^{-1}
h	3,000	2,000	4,000	m


Uncertain parameters


- Cruise altitude
- Cruise velocity

Constraints	Description	Discipline
G(1,2)	Static margin: $0.05 \le SM \le 0.2$	S&C ($@V_{design}$)
G(3)	Take-off field length \leq 700 (m) (2,300ft)	Perf (50ft) (WOT)
G(4)	Lateral stability derivative: $C_{1\beta} \le -0.03$	S&C ($@V_{design}$)
G(5)	Gross weight: MTOW ≤ 1,020kg	Weight
G(6)	Pitching moment der $C_{ma} \leq 0$	S&C ($@V_{design}$)
G(7)	Landing distance ≤ 518m 1,700ft	Perf·
G(8)	Wing weight: Wwing $\leq W_{baseline}$ (kg)	Weight
G(9)	Lift over drag ratio: $L/D \ge L/D_{baseline}$	Aeros ($@V_{design}$)
G(10)	Wing taper ≥ 0.4	Geometry
G(11)	Take-off ground roll \leq 438m (1,440ft)	Perf (@WOT)
G(12)	Maximum speed $(V_{max}) \ge 60.3 \text{ms}^{-1}$	Perf (@WOT)
G(13)	Stall speed $(V_{stall}) \le 27.8 \text{ms}^{-1}$	Perf (Clean)
G(14)	Service ceiling \geq 25,000ft	Perf (@WOT)
G(15,16)	Directional derivatives coefficient $0.08 \le C_{n\beta} \le 0.28$	S&C ($@V_{design}$)
G(17)	Empty weight: We ≤ We_Baseline(kg)	Weight

Result of the Robust Design Optimization

	Deterministic	Robust
Mean endurance, hours	21.11	21.84
Endurance variance, hours	9.57	1.51
Probability $P(E \ge 21 h)$	50.4%	78.4%

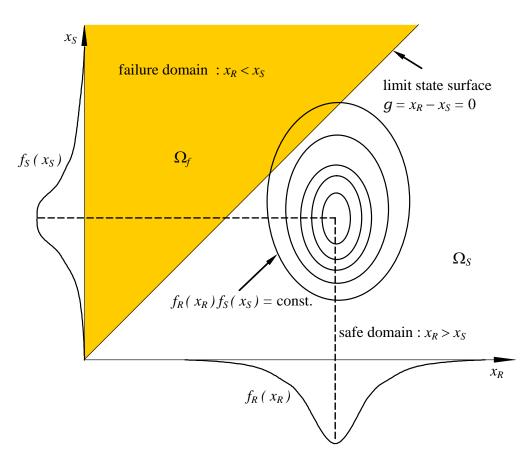
Managing the Constraints

Reliability based Design Optimization (RBDO)

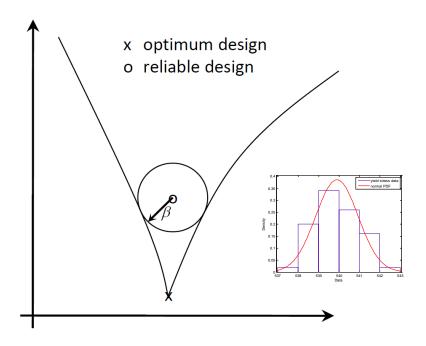
$$\min f(\bar{x}, \bar{p}, y(\bar{x}, \bar{p}))$$

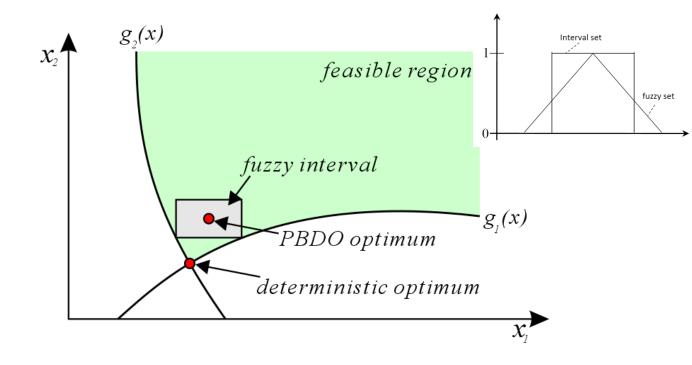
where
$$i = 1, ..., N_{cons}$$

s.t.
$$P[g_i(x, p, y(x, p)) > 0] \le P_f$$


$$x_l \leq x \leq x_u$$

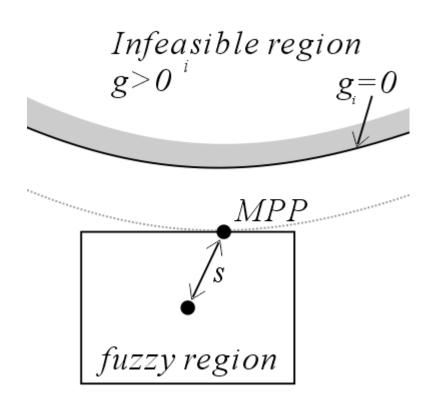
Modified constraint formulation


Deterministic: Constraint value ≤ 0


- RBDO: Probability of (Constraint value > 0) ≤ Target probability

RBDO and Possibility-based Design Optimization(PBDO)

- Two similar methods that vary in the way of managing the uncertainty
 - RBDO: probability density function
 - PBDO: intervals or fuzzy numbers


Performance Measurement Approach

- PMA is developed rather for design than reliability analysis
- Calculates the combination of uncertain variables where the value of the constraint is the worst

$$\max g(V)$$

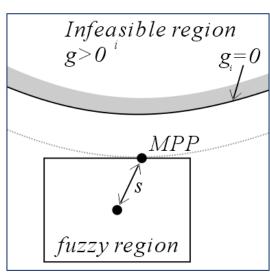
$$s.t. \ \|V\|_{\infty} \le 1 - \alpha_{t}$$

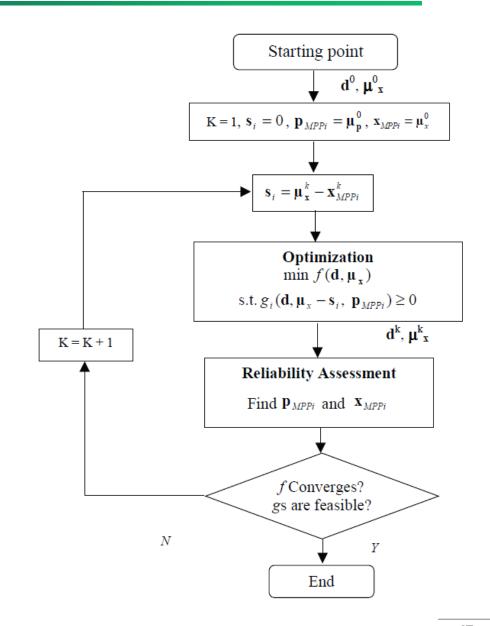
- The optimum point on this domain is identified as the most possible point (MPP)
- Usually solved via gradient methods (SQP)

PBDO Solution Strategy – Sequential Method

Run deterministic optimization at first iteration

$$\min f(d, \overline{x}, \overline{p})$$
s.t. $g_i(d, \overline{x}, \overline{p}) \le 0$


- Find x_{MPP} , p_{MPP} using PMA
- Calculate shift vector

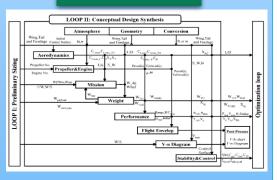

$$S_i = \overline{X} - X_{MPP_i}$$

Run deterministic optimization

$$\min f(d, \overline{x}, \overline{p})$$
s.t. $g_i(d, \overline{x} - s_i, \overline{p}) \le 0$

Iterate until convergence

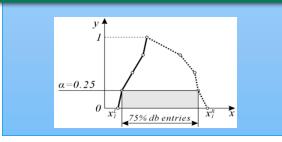
Benchmarking The Accuracy of Analysis Software


Aircraft Database

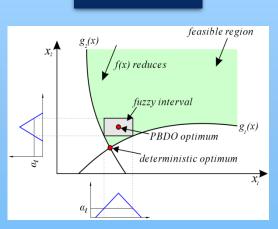
Group	Description	Group	Description
Configuration	Wing, HT, VT geometry Fuselage shape Landing gear location	Propulsion	Engine Maximum thrust SFC Propeller RPM
Weight	Empty mass Maximum takeoff mass Fuel mass	Performance	Minimumspeed Maximum speed Maximum range Maximum endurance Maximum rate of climb Takeoff distance Landing distance

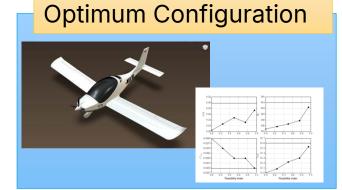
Configuration

Analysis

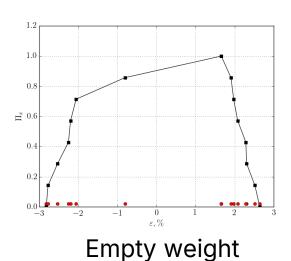


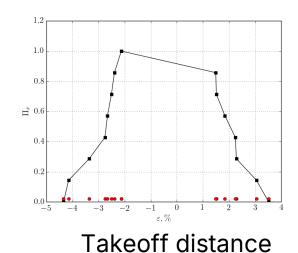
Predicted Data (Y_p)


Error estimation

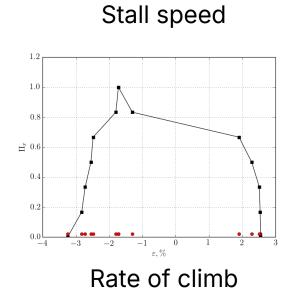

$$\varepsilon = \frac{Y_p}{Y_{db}} - 1$$

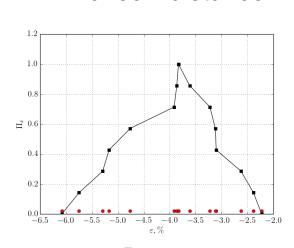
Construct Fuzzy Membership Function


PBDO

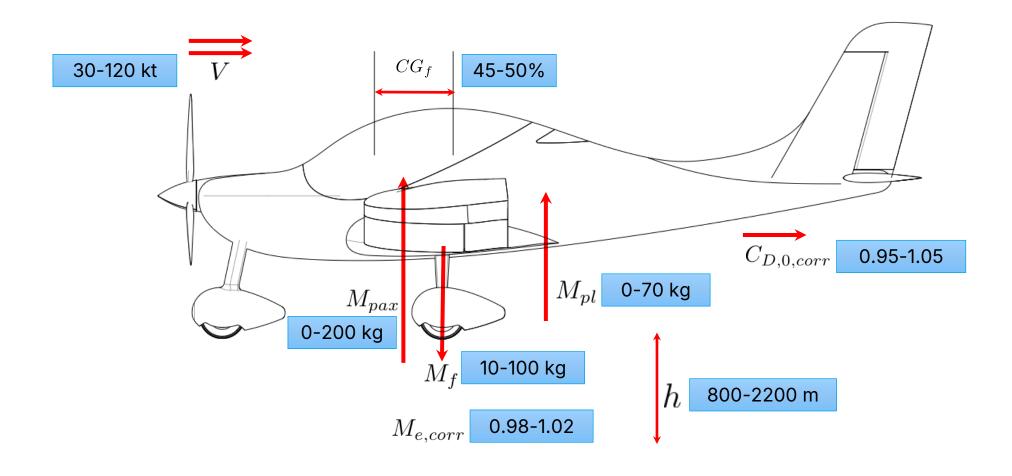


Fuzzy Membership Functions for Analysis Errors


X-axis corresponds to % of DB entries used to describe the interval



Landing distance



Results of Design with Analysis Error Uncertainties

	Variable	Unit	Baseline	Deterministi		Dat	abase Cover	age	
			С	100%	75%	50%	25%	5%	
	R	km	1570	2245	1623	1735	1822	1897	2294
	AR_w	-	7.92	9.91	7.10	7.36	7.72	8.02	9.35
ပ္သ	S_w	m^2	11.40	10.28	11.40	11.32	11.12	11.08	11.18
ple	X_{w}	m	1.41	1.74	4.7	4 07	4 75	4 70	4 7 5
ri a	AR_h	-	4.77	3.34					
\ \	S_h	m^2	3.10	1.86	F	→ PBDO results			
Design variables	η_h	-	1.00	1.00	2400 -	PBDO resultsDeterministic	1		
	AR_v	-	1.63	2.28		Baseline	optimum		
	S_v	m^2	1.04	0.62		:			,
	η_v	-	0.60	0.71	2200			<i></i>	<i></i>
	W_e	kg	344.6	344.0	3				
O	L/D	-	5.43	6.08					
a <u>n</u>	R	km	1570	2246	Bange 2000			/	
Š	R/C	m/s	5.23	5.36	R _a				
ear	V_{stall}	m/s	20.84	21.61					
Ě	V_{max}	m/s	65.09	67.41	1800		•		
Constraints mean value	l_{TO}	m	282.0	297.1	1	_•			
air	l_{LDG}	m	278.3	284.1	1				
str	SM	-	0.2475	0.2980	0 1600				
no	$C_{n_{eta}}$	1/rad	0.0395	0.0250	0 -				
O	$C_{l_{oldsymbol{eta}}}$	1/rad	0.0236	0.0241	-C 0.0	0.2	0.4 0.4 Possibility index	6 0.8	1.0

Tail Design with Uncertain Loading and Operating Conditions

Design Formulation

Design Constraints

- 1. Static margin > 8%
- 2. Elevator < 30 deg. on approach
- 3. Elevator < 30 deg. on takeoff rotation
- 4. Yaw moment coefficient due to sideslip >0.04
- 5. Roll moment due to sideslip < -0.03
- 6. Dutch roll frequency > 1 rad/s
- 7. Dutch roll damping > 0.08
- 8. Short period frequency > 2, < 10
- 9. Short period damping > 0.35, < 2
- 10. Stall speed < 40 kts
- 11. Takeoff distance < 330 m
- 12. Landing distance < 330 m
- 13. Maximum speed > 120 kts

Design Formulation

minimize mass =
$$f(x, P)$$

$$x = [b_h, c_h, S_v, x_{mw}, b_{mw}, c_{mw}]$$

$$P = [M_{e,corr}, C_{D,0,corr}, CG_f, M_{pax}, M_{pl}, M_f, h, V]$$
such that $g_i(x + S_i, P_{mpp,i}) \leq 0$

Optimum Design Variables

	b_h	c_h	S_v		b_{mw}	c_{mw}
	m	m	m ²	m	m	m
x_{lb}	2.00	0.40	0.20	1.00	7.00	0.8
x_{ub}	5.00	0.65	2.50	5.00	15.0	1.2
x_{det}^*	2.00	0.59	1.28	1.55	9.22	1.2
x_1^*	3.17	0.64	1.35	1.57	9.67	1.2
x_2^*	3.15	0.65	1.35	1.58	9.67	1.2
x_{opt}^*	3.13	0.65	1.35	1.56	9.67	1.2

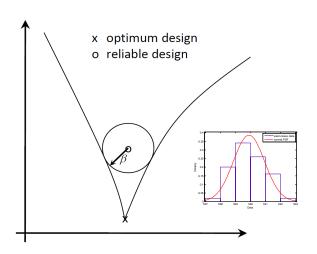
Most Probable Points (MPP) for Constraints

The most critical combination of uncertain parameters for each constraint

				Un	certa	in Pa	arame	eters						
		M_g	CG_f	M_{pax}	M_{pl}	M_f	CG	$C_{D,0}$	h	V		goal	g	g
		kg	-	kg	kg	kg	m	-	m	kt			$ar{p}$	p_{mpp}
	h_n	585	0.50	34	70	35	2.00	0.027	1563	54	\geq	8%	20%	8%
	$\delta_{e,a}$	597	0.40	176	0	61	1.74	0.029	3000	105	\leq	30°	11°	19°
	$\delta_{e,r}$	596	0.40	200	0	41	1.74	0.029	3000	104	\leq	30°	16°	30°
	$C_{n_{oldsymbol{eta}}}$	602	0.50	181	68	29	1.95	0.030	3000	117	\geq	0.040	0.043	0.04
	$C_{l_{oldsymbol{eta}}}$	589	0.48	195	63	16	1.93	0.028	0	117	\leq	-0.03	-0.10	-0.08
ıts	S_{to}	605	0.45	107	32	79	1.85	0.030	1571		\leq	330m	263m	276m
Constraints	V_{s}	605	0.46	127	40	74	1.87	0.028	1594	91	\leq	40kt	39kt	39kt
str	S_{ld}	607	0.46	128	41	74	1.88	0.025	1522		\leq	330m	308m	321m
on	V_{max}	601	0.45	108	33	80	1.85	0.030	1413		\geq	120kt	126kt	122kt
Ö	ζ_{dr}	598	0.50	200	68	11	1.96	0.029	3000	84	\geq	0.08	0.17	0.14
	ω_{dr}	560	0.50	196	70	14	1.96	0.028	1530	62	\geq	1.00	2.28	1.85
	ω_{sp}	560	0.50	111	70	99	1.97	0.025	3000	56	\geq	2.00	5.30	2.30
	ω_{sp}	607	0.40	200	0	36	1.73	0.030	0	118	\leq	10.0	5.30	9.01
	ζ_{sp}	599	0.40	154	0	85	1.74	0.028	3000	108	\geq	0.35	0.58	0.49
	ζ_{sp}	576	0.50	108	70	69	1.97	0.028	0	74	≤	2.00	0.58	0.71

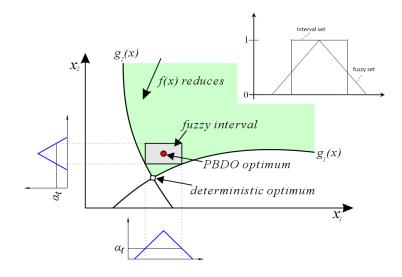
Methods for Design under Uncertainties

RDO: Robust Design Optimization


Minimizes variation of objective function due to uncertain parameter/variables

A – deterministic B – RDO optimum

RBDO: Reliability Based Design Optimization


Sets constraint as: **probability** of failure less than specified value.

Uncertain parameter/variable is assumed to have random distribution

PBDO: Possibility Based Design Optimization

Sets constraint as: possibility of failure less than specified value. Uncertain parameter/variable is created as interval or fuzzy number

Design Iterations for The Light Aircraft Development

Result of Light Aircraft Development Project

References

- N. V. Nguyen, J.-W. Lee, Y.-D. Lee, and H.-U. Park, "A multidisciplinary robust optimisation framework for UAV conceptual design," The Aeronautical Journal, vol. 118, no. 1200, pp. 123–142, Feb. 2014, doi: 10.1017/S0001924000009027.
- M. Tyan, N. V. Nguyen, S. Kim, and J.-W. Lee, "Database Adaptive Fuzzy Membership Function Generation for Possibility-Based Aircraft Design Optimization," AIAA J. Aircr., vol. 54, no. 1, pp. 114–124, Jan. 2017, doi: 10.2514/1.C033833.
- Z. W. Thu, M. Tyan, Y.-H. Choi, M. I. Alam, and J.-W. Lee, "Possibility-based Sizing Method for Hybrid Electric Aircraft," IEEE Access, vol. 13, pp. 20945–20959, 2025, doi: 10.1109/ACCESS.2025.3531696.
- D. Neufeld, J. Chung, and K. Behdinian, "Aircraft Conceptual Design Optimization Considering Fidelity Uncertainties," Journal of Aircraft, vol. 48, no. 5, pp. 1602–1612, Sept. 2011, doi: 10.2514/1.C031312.
- M. Tyan, N. V. Nguyen, and J.-W. Lee, "Robust Optimization of Transonic Airfoil for Generic Fighter Aircraft using Global Variable Fidelity Modeling," in 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, D.C.: American Institute of Aeronautics and Astronautics, 2016. doi: 10.2514/6.2016-3284.
- N. V. Nguyen, J.-W. Lee, M. Tyan, and D. Lee, "Possibility-based multidisciplinary optimisation for electric-powered unmanned aerial vehicle design," Aeronaut. J., vol. 119, no. 1221, pp. 1397–1414, Nov. **2015**.

Thank You for your attention!

This presentation file can be found here:

https://maximtyan.github.io/talks/

